
Conditional SEMs from OLS, 1 

 

 

 

 

 

 

Conditional Standard Errors of Measurement for Performance Ratings  

from Ordinary Least Squares Regression 

 

 

Mark R. Raymond and Irina Grabovsky 

National Board of Medical Examiners 

 

 

 

 

 

 

 

 

 

 

 

 

National Council on Measurement in Education; April, 2011; New Orelans, LA.  

 

 

 

 

Correspondence:  Mark Raymond, NBME, 3750 Market Street, Philadelphia, PA 19104.  

mraymond@nbme.org  



Conditional SEMs from OLS, 2 

 

 

Abstract 

Although numerous scholars and publications advocate the use of conditional standard errors of 

measurement (SEMs) for evaluating measurement precision, they have yet to enjoy widespread 

use in psychological research or large-scale testing programs.  This article describes methods for 

computing conditional SEMs and an overall index of reliability for performance ratings based on 

ordinary least-squares (OLS) regression.  The proposed computational approach is 

straightforward and provides indices of measurement precision similar or identical to those based 

on generalizability theory.  While the methods are illustrated within the context of performance 

assessments, the indices also apply to dichotomously scored responses from multiple-choice 

tests.  
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Conditional Standard Errors of Measurement for Performance Ratings 

from Ordinary Least Squares Regression 

Traditional methods for computing reliability and standard errors of measurement (SEM) 

produce a single index that represents an average for all examinees.  However, it is widely 

known that measurement error varies with, or is conditional on, examinee ability (Brennan, 

2001).  Lord’s (1955) method for computing conditional SEMs based on the binomial error 

model was one of the early methods to gain popularity, probably due to its simplicity.  It can be 

computed for any score by knowing only the number of items on a test.  Over the past half 

century, several other methods for computing conditional SEMs have been proposed, including 

those based on analysis of variance, item response theory, and generalizability theory (Brennan 

& Feldt, 1989; Feldt, Steffen, & Gupta, 1985; Qualls-Payne, 1992).  Despite their obvious utility, 

conditional SEMs have yet to be used on a wide scale by operational testing programs, perhaps 

because some types of conditional SEMs are computationally intensive.    

Conditional SEMs seem particularly important within the context of performance 

assessment, where errors of measurement are often larger than desirable (Baker, O’Neill, & 

Linn, 1993) and where errors can vary for individual examinees depending on the particular 

raters or tasks they happen to encounter. The purpose of this paper is to introduce simple 

methods for computing conditional SEMs within the framework of ordinary least-squares (OLS) 

regression. The use of OLS regression to reduce systematic measurement error (i.e., rater 

leniency) in performance assessment has become increasingly common over the past two 

decades (Braun, 1989; Harik, Clauser, Grabovsky, Nungester, Swanson, Nandakumar, 2009; 

Houston, Raymond & Svec, 1991; Raymond, Harik, & Clauser, 2011), and it would be 

convenient to have an approach for computing conditional SEMs and reliability coefficients 

within that same framework.  This paper describes such an approach.   
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The next section reviews methods for obtaining conditional SEMs based on 

generalizability theory.  We then we describe a rater effects model based on OLS regression, 

present equations for computing conditional errors and reliability coefficients based on OLS and 

show their equivalence to those based on generalizability theory, and demonstrate the 

computation of conditional SEMs using both simulated and actual rating data.  We also illustrate 

its application to dichotomously scored responses.  

Conditional SEMs from Generalizability Theory 

Generalizability theory provides an appealing framework for computing conditional 

SEMs because it of its flexibility in conceptualizing and quantifying sources of error for various 

types of measures given under complex administration designs.  For completely crossed single-

facet rating designs, the model can be expressed in deviation form (Brennan, 2001, p. 22):  

Xpr =    + (p – ) + (r – ) + (Xpr –  p –r + )      (1) 

where  Xpr   is the rating given to examinee p  by rater r; 

  is the grand mean over all examinees and raters; 

 (p – ) is the examinee effect for examinee p,  

 (r – ) is the rater effect for rater r;  and 

 (Xpr –  p – r + )   is residual effect (examinee-rater interaction).    

Generalizability theory distinguishes between two types of measurement error: absolute 

and relative, designated as Δ and δ.   The absolute error for examinee p on the encounter with 

rater r is defined as the difference between the examinee’s observed score and true score: 

Δ𝑝 = 𝑋𝑝𝑟 − 𝜇𝑝.       (2) 

Absolute error is important for criterion-referenced score interpretations where an examinee’s 

score is typically compared to a fixed standard of performance (e.g., passing score).  In contrast, 
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relative error provides information about the precision of examinee’s score in relation to the 

group’s performance and is appropriate for norm-referenced interpretations.   It is defined as the 

difference between an examinee’s observed deviation score and true deviation score: 

δ𝑝 = (𝑋𝑝𝑟 − 𝜇𝑝) − (𝜇𝑟 − 𝜇)       (3) 

or, equivalently as: 

δ𝑝 = 𝑋𝑝𝑟 − (𝜇𝑟 − 𝜇) −  𝜇𝑝 .      (4) 

The important feature of relative error is that it ignores, or removes, the systematic 

variability associated with the particular group of raters who serve as evaluators for a particular 

assessment occasion or test form.  That is, absolute error includes the rater effect while relative 

error does not.  Variances of these two errors of measurement are denoted as σ
2
(Δ) and σ

2
(δ), 

and their square roots are the conditional absolute and relative SEMs.  The computation of both 

variances is described below; for a more thorough treatment see Brennan (1998; 2001).  

Absolute Conditional SEM.  From equation 2, the variance of the absolute errors for 

examinee p can be expanded using the notation of conditional variance as follows:  

𝜎2(Δ𝑝) =  𝑣𝑎𝑟(Δ𝑝|𝑝)  = 𝑣𝑎𝑟(𝑋𝑝𝑟 − 𝜇𝑝|𝑝) ,   (5) 

which can be calculated from observed ratings:  

𝜎2(Δ𝑝) =
∑ (𝑋𝑝𝑟−𝑋𝑝.)

2
𝑟

𝑛𝑟(𝑛𝑟− 1)
 ,  

where nr is the number of ratings received by examinee p and  Xp. is the mean of those ratings.  

The square root of this provides an estimator of conditional absolute SEM: 

𝜎(∆𝑝)  = √∑ (𝑋𝑝𝑟−𝑋𝑝.)
2

𝑟

𝑛𝑟(𝑛𝑟− 1)
        (6) 
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  Relative Conditional SEM.  The variance of the relative errors for examinee p as shown 

in equation 4 is conceptually defined as:  

𝜎2(δ𝑝) = 𝑣𝑎𝑟(δ𝑝|𝑝) = 𝑣𝑎𝑟(𝑋𝑝𝑟 − (𝜇𝑟 − 𝜇) − 𝜇𝑝)|𝑝) .   (7) 

Because this definition involves the variance of a linear combination, it implicitly includes a 

covariance term, which is evident when terms are rearranged and expanded.  The result is the 

following computational formula for the relative conditional SEM (Brennan, 1998, eq 36):  

 

   𝜎(𝛿𝑝) = √𝑛𝑝+1

𝑛𝑝−1
𝜎2(Δ𝑝) +

𝜎2(𝑟)

𝑛𝑟
−

(
𝑛𝑝

𝑛𝑝−1
 )(2 ∑ (𝑋𝑝𝑟−𝑋𝑝.)(𝑋.𝑟−𝑋..)

𝑛𝑟
1 )

𝑛𝑟(𝑛𝑟−1)
   ,   (8) 

 

where np is the number of examinees, σ
2
(r) is the variance component for the rater effect, X.r  is 

the mean of ratings for rater r, and the right most term represents the covariance over raters 

between each examinees’ ratings and the mean of all ratings (i.e., the person-total covariance).  

The value of σ
2
(r) is obtained from a variance component or generalizability analysis, and 

σ
2
(Δp) is obtained using equation 6.  It can be seen that σ

2
(δp) is equal to σ

2
(Δp) plus a rather 

complicated adjustment.  This adjustment is negative for most examinees; therefore, the relative 

conditional SEM is less than the absolute conditional SEM for most examinees. Brennan (1998; 

2001) suggests two simplifications.  First, since the two ratios involving the number of 

examinees approach 1 as np →∞, those terms can be eliminated with large sample sizes.  Even 

so, the computation still requires some effort and the covariance term contributes to instability of 

estimates.  The second simplification eliminates the covariance term.  While this shortcut is 

practical, it provides only a rough approximation (Brennan, 1998; 2001).  The OLS framework 

described next provides a simplified and conceptually appealing approach to computing σ(δp).  
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Modeling Rater Effects with OLS Regression 

While OLS regression can be used to estimate the parameters for completely crossed 

rating designs, it is particularly useful for unbalanced nested (incomplete) designs where groups 

of examinees are evaluated by different but overlapping panels of raters.  For incomplete 

designs, the mean of observed ratings for a given examinee will be biased to the extent that some 

raters are more or less lenient than other raters.  Parameter estimates obtained from OLS 

statistically control for leniency error.  Simulation studies and those based on real data indicate 

that OLS-adjusted ratings result in considerable increases in reliability (Braun, 1988; Houston et 

al., 1991; Harik et al., 2009).  The following linear model can be used to estimate examinee 

ability with the rater effect removed: 

 Xpr =  p +  r + epr ,      (9) 

where  Xpr   is the rating given to examinee or person p by rater r; 

p  is the examinee’s true rating or score;  

r is the rater effect for rater r, defined as the true mean of rater r across all 

examinees minus the grand mean of all raters and all examinees; and 

epr  is random error (examinee-rater interaction). 

Based on properties of OLS estimators, estimates of p can be shown to be equal to the 

mean score for examinee p over all raters after correcting for rater leniency.  Estimates of r  are 

deviation scores that correspond to the stringency index for each rater, with positive values 

indicating that the rater is more lenient than average.  Expressing all parameters in deviation 

form results in equation 1.  That equivalence is noted below because it provides the basis for 

computing σ(δp) from the OLS model.  Specifically,   

     + (p – )  =   p  =  p 
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 (r – ) =   r 

 (Xpr  –  p –r + ) =   epr 

In practical applications it is common to use the results of the OLS regression to compute an 

adjusted rating for each rater-examinee encounter.  The adjusted rating, 𝑋𝑝𝑟
∗ , can be obtained by:  

 𝑋𝑝𝑟
∗  = Xpr –  r ,      (10) 

which is the observed rating with the effect for each rater removed.  The adjusted rating can also 

be computed from:  

𝑋𝑝𝑟
∗  = αp +  epr ,      (11) 

where the adjusted rating is expressed as the examinee’s true rating plus random error.  It is 

evident that the mean of  𝑋𝑝𝑟
∗  across raters r equals p.  We denote the mean of adjusted ratings 

as 𝑋𝑝∙
∗  .  

Conditional SEMs using OLS Regression 

Absolute Conditional SEM 

Equation 6 is used without modification to compute σ(Δp) within the OLS framework.  It 

can be viewed as the square root of the within-person variance of observed ratings divided by the 

number of raters, or as the standard error of the mean rating for examinee p.   

Relative Conditional SEM 

The principal difference between σ(Δp) and σ(δp) is that the former contains systematic 

error variance due to the rater effect plus random error, while the latter includes only random 

error variance.  We propose two methods for estimating σ(δp): one based on the adjusted ratings, 

𝑋𝑝𝑟
∗ , and the other based on the residuals, epr.  The two methods are algebraically equivalent; the 
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practitioner can use either approach to greatly simplify the computation of the relative 

conditional SEM.    

Equation 7 defined the conditional relative variance as 𝑣𝑎𝑟(δ𝑝|𝑝) = 𝑣𝑎𝑟(𝑋𝑝𝑟 − (𝜇𝑟 −

𝜇) −  𝜇𝑝)|𝑝).  Recall from the OLS regression model that (r – ) = r , and that  Xpr – r = 𝑋𝑝𝑟
∗ .  

Substituting these values into Equation 7 gives the following equivalent representation for 

relative error variance:  

𝜎2(δ𝑝) = 𝑣𝑎𝑟(𝑋𝑝𝑟
∗ − 𝜇𝑝|𝑝)     (12) 

This is identical in form to the absolute conditional error defined in equation 5, suggesting that 

equation 6 also be used for estimating relative conditional error, assuming that adjusted ratings, 

𝑋𝑝𝑟
∗ , are used.  Given that p = 𝑋𝑝.

∗   the following can be used to compute relative conditional 

errors:  

σ(δp) = σ(Δp)* = √
∑ (𝑋𝑝𝑟

∗ −  𝑋𝑝.
∗  )

2
𝑟

𝑛𝑟(𝑛𝑟− 1)
 ,           (13) 

The key feature of this equation is that σ(Δp)* is computed only from adjusted ratings obtained 

from OLS regression; in particular, the covariance term is not explicitly required.   

There is yet an alternative approach to computing the conditional relative error.  From the 

OLS methodology we know that p = 𝑋𝑝.
∗    Therefore, relative error as defined in equation 12 can 

be rewritten as:  

𝜎2(δ𝑝) = 𝑣𝑎𝑟(𝑋𝑝𝑟
∗ − 𝛼𝑝|𝑝) .     (14) 

This is the variance of the differences between observed scores and the examinee ability estimate 

from the OLS model.  That difference is designated as epr in equation 11.  In other words, the 

quantity (𝑋𝑝𝑟
∗  – 𝑋𝑝.

∗ ) in equation 13 can be replaced by epr , which is the residual from an OLS 

analysis.  Thus, the relative conditional SEM can be conveniently computed by:  
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 σ(δp) = σ(Δp)*  =  √
∑ (𝑒𝑝𝑟

2 )𝑟

𝑛𝑟(𝑛𝑟− 1)
  ,    (15)  

which corresponds to the mean-squared residual taken over raters for each examinee, divided by 

the number of raters minus 1.  

Reliability Index Based on OLS Regression 

The results of OLS regression can also be used to obtain the reliability of adjusted 

ratings.  The traditional (overall) SEM  is given by the square root of the mean of the individual 

values of σ
2
(δp) or σ

2
(Δp).  Overall SEMs computed in this manner will correspond to the SEMs 

based on classical test theory (i.e., KR-20 and KR-21).  The formula for the traditional SEM from 

classical test theory can be rearranged to compute a reliability-like coefficient based on σ
2
(Δp)* 

and the variance of the adjusted mean ratings, 𝑆𝐷𝑝
2*, over all examinees.  That coefficient can be 

designated as:   

ROLS = 1 –  

1

𝑛
∑ 𝜎2(∆𝑝)∗

𝑆𝐷𝑝
2∗   .    (16) 

This quantity is one minus the ratio of error variance to observed variance and is essentially 

identical to the KR-21 formula derived by Lord (1955) for dichotomously scored items. 

Application to Rating Data 

Completely Crossed Design 

Table 1 presents simulated ratings for a completely crossed single-facet design where np 

= 40 and nr = 8 (the partitioning of the table and italic font are explained later).  These ratings 

contain levels of systematic error (rater leniency) and random error comparable to those found in 

operational settings where performances are being judged.  Relative conditional SEMs were first 
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computed for observed ratings in Table 1 using equation 8.  Then, p , r , and 𝑋𝑝𝑟
∗  were 

estimated using OLS regression, and conditional SEMs were computed from equation 13 or 15.  

As shown in Figure 1, σ(δp) and  σ(Δp)* are very similar. The mean difference is 0.003, with 

differences ranging from -0.006 to 0.010, which are negligible from a practical perspective.  

The top two panels of Table 2 provide overall indices of measurement error based on  

generalizability theory for both observed and adjusted ratings.  As expected, the overall SEMs for 

observed ratings are larger for absolute error than for relative error, and the overall reliability is 

less for absolute error.  For adjusted ratings, the relative indices of measurement precision for 

observed ratings are identical to the absolute indices for adjusted ratings.  This is because the 

systematic error due to the rater effect has been removed from the adjusted ratings.  The bottom 

panel of Table 2 shows the indices of measurement precision for ratings based on OLS 

regression.  Given that the regression model removes the rater effect, there is no distinction 

between relative and absolute error for the OLS model; therefore the bottom portion of the table 

does not include separate columns for relative and absolute error.  Consistent with the data 

depicted in Figure 1, the indices of measurement precision for OLS are comparable but not 

identical to the indices based on generalizability theory (e.g., Φ = .8756; ROLS = .8787).   

The data structure in Table 1 was replicated 100 times. The indices of measurement 

precision based on OLS were slightly more favorable and less variable than those based on 

generalizability theory, but the differences were minor.  The mean and SD of the generalizability 

coefficient (ρ
2
) for adjusted ratings over the 100 replications were  .9096  and 0.0112, while the 

mean and SD for ROLS were .9119 and 0.0109.  The value of ROLS was slightly but consistently 

larger than ρ
2
 for each of the 100 replications, with the magnitude of the difference ranging from 

0.0015 to 0.0031, and averaging 0.0023.     
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Incomplete (Nested) Design 

While the OLS framework simplifies the computation of the relative conditional SEM, 

relative error is not relevant to many large-scale performance assessments.  This is because 

logistic constraints (e.g., examinee volume; security) require a rating design for which examinees 

are nested within raters, and relative error and absolute error are indistinguishable for nested 

designs (Brennan, 1998; 2001).  Nonetheless, the methods presented here still have application to 

large-scale programs that require nested designs because some testing programs use OLS or a 

similar model to adjust scores by removing the rater effect (Braun, 1989; Harik et al., 2009).  

Technical reports for such programs typically report an overall index of dependability (i.e., Φ) 

and an overall SEM for both observed and adjusted scores based on the variance components for 

𝑋𝑝𝑟 and 𝑋𝑝𝑟
∗ , respectively.  These indices can be used to illustrate the improvements in 

measurement precision realized by using adjusted scores. By extension, we propose that it is also 

beneficial for large-scale programs to compute absolute conditional SEMs for both observed and 

adjusted scores and to compare the two to evaluate reductions in measurement error at each score 

level throughout the distribution.  

The ratings in Table 1 were converted to a nested design such that np = 40 and nr = 3:8 

(i.e., each examinee is judged by 3 of 8 raters).  The italicized values within the partitions are 

those that were dropped, producing a matrix that was 37.5% complete.  The design had sufficient 

overlap to permit any rating to be linked to any other rating – a requirement whether calibrating 

raters or items using OLS regression, item response theory, or just about any other model.  OLS 

regression was then used to estimate p , r , and 𝑋𝑝𝑟
∗ , and absolute conditional SEMs were 

computed for both observed and adjusted ratings.  
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Figure 2 plots σ(Δp) against σ(Δp)* for the 40 examinees.  Unlike the data plotted in 

Figure 1, we expect to see differences in the two sets of values.  As suggested by Figure 2, 

conditional SEMs are generally smaller for adjusted ratings; overall they are about 30% less in 

magnitude.  However, there are instances where observed ratings have smaller conditional SEMs.  

This is most obvious for the two examinees for whom there was perfect agreement among 

observed ratings, resulting in σ(Δp) = 0.  There were 12 twelve examinees for whom the 

observed ratings disagreed only by 1 point for one rater, which resulted in σ(Δp) = 0.333.  In 

eight of these instances the observed conditional SEM was less than the adjusted conditional 

SEM, while for four examinees the adjusted SEM was smaller. The graph illustrates that the 

magnitude of reduction in conditional SEMs for adjusted ratings is generally greatest for those 

with the largest error for observed ratings.  

Table 3 gives variance components and various indices of measurement precision based 

on G-theory and on the OLS computations.  Two features stand out.  First, the indices of 

measurement precision suggest that there is considerable advantage to using adjusted scores 

(e.g., Φ = .4009 observed vs. Φ =.7358 adjusted).  Second, the precision indices for adjusted 

ratings were nearly identical whether computed from generalizability theory or OLS  (e.g., Φ = 

.7358; ROLS = .7359).  As some of the computations were done by hand, we suspect that this 

difference can be attributed to rounding error.   

The nested design was also replicated 100 times.  The adjusted ratings consistently 

exhibited overall SEMs that were consistently 50% smaller than SEMs for the observed ratings,  

The mean and SD of the dependability index (Φ) for observed ratings over the 100 replications 

were .5209 and .0890, while the corresponding values for the adjusted ratings were .7770 and 

0.0436.  This outcome is consistent with expectations.  The mean Φ for adjusted ratings based on 
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generalizability theory and ROLS were identical to six decimal places for each of the 100 

replications.   

Additional Applications 

We computed conditional SEMs from OLS regression for sets of live ratings for a large-

scale performance assessment of physicians’ clinical skills.  This nested design involves cohorts 

of about 1,200 examinees who, over an 8-week period, are assigned to 12 raters from a pool of 

approximately 125 raters (see Harik et al., 2009 or Raymond et al., 2011 for details).  Adjusted 

ratings exhibited substantially smaller conditional SEMs throughout the score distribution except 

for the highest ratings (i.e., where an examinee receives all 9s on a scale of 1 to 9), and values of 

ROLS  were equivalent to Φ indices based on adjusted ratings to the third and fourth decimal.  

Analyses were also completed using actual and simulated responses from dichotomously-scored 

selected response tests under circumstances for which the relative conditional SEM might be 

considered an appropriate index of measurement precision (e.g., crossed designs with norm-

referenced decisions).  The conditional SEMs based on σ(Δp)* and 𝜎(𝑒𝑝𝑟
2 )  were consistently 

comparable to those based on σ(δp), while ROLS exhibited the very small bias described earlier 

when compared to ρ
2
.   

Discussion 

This paper illustrated the computation of common indices of measurement error using 

ratings modeled by OLS regression.  Relative conditional SEMs for ratings from a crossed design 

are typically computed using equation 8, which is somewhat tedious.  This paper suggested 

alternative methods for computing relative conditional SEMs based on by-products of subjecting 

the rating data to OLS regression.  The first approach is based on computing the absolute error 

for each examinee for adjusted ratings, as shown in equation 13.  The absolute error is much 
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easier to compute than relative error.  The second approach is based on the mean-squared 

residual over raters for each examinee as indicated in equation 15.  Overall indices of 

measurement precision based on OLS were found to be comparable to those based on 

generalizability theory.  Not only are the computations for these indices of measurement 

precision straightforward, but all can be computed without having to leave the OLS regression 

framework to run supplemental variance component or generalizability analyses.   

The calculation of the absolute conditional SEM is straightforward within the framework 

of generalizability theory; thus the methods proposed here have most utility in instances for 

which the more complicated relative conditional SEM is the suitable index of measurement 

precision.  For example, the methods illustrated here may prove useful for small-scale crossed 

designs, such as low-volume certification tests, educational and psychological experiments, and 

various types of competitions that require subjective judgments (e.g., figure skating, artistic 

creations, grant reviews).  Second, while not the focus of the present paper, the methods 

presented here also apply to any multiple-choice assessment.  The importance and desirability of 

conditional SEMs has been recognized for years.  While the Standards for Educational and 

Psychological Testing encourages that they be reported, that same document also acknowledges 

that practical constraints often preclude their use (American Educational Research Association, 

American Psychological Association, & National Council on Measurement in Education, 1999. 

p. 29).  Perhaps the method presented here will encourage wider use of conditional SEMs for any 

situation where measurement precision can be expected to vary across the objects of 

measurement.  

For large-scale programs that require nested designs, the methods illustrated here have 

the most direct applicability to rating data in a two-step fashion.  First, OLS regression can be 

used to estimate examinee ability and rater leniency parameters.  Next, absolute conditional 
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SEMs and an overall index of dependability can be obtained for adjusted ratings.  Conditional 

SEMs also provide a more sensitive metric for evaluating behavioral and statistical interventions 

intended to improve the reliability of ratings (e.g., rater training; scale refinement; rater 

calibration).   For example, in a study of the effectiveness of modeling ratings using OLS 

regression, Raymond et al (2011) showed that score adjustments were largest in the region of the 

score distribution where measurement errors were greatest. 

This paper establishes initial support for the use of conditional SEMs and a reliability 

index based on OLS regression. Given the limited scope of this study, it would be worthwhile to 

conduct more extensive simulations to compare the properties of OLS-based indices of 

measurement error to other types of indices besides those based on generalizability theory (e.g., 

Feldt et al., 1985; Qualls-Payne, 1992).   While our results suggest that the OLS indices are at 

least as stable as those based on generalizability theory, additional simulations under various 

conditions (Nr, Np, degree of nesting, σ
2

rater , σ
2

error ) are needed to better understand the 

stability of different estimators of the conditional SEM.  It also would be useful to extend the 

approaches suggested here to two-facet designs where, for example, both raters and tasks vary in 

some systematic fashion.  Indices based on residuals from the OLS regression model may prove 

to be particularly useful for gauging the amount of conditional error contributed by raters alone, 

by tasks alone, and by their combination.  

 

  



Conditional SEMs from OLS, 17 

 

References 

American Educational Research Association, American Psychological Association, & National 

Council on Measurement in Education (1999). Standards for educational and psychological 

testing. Washington DC: American Educational Research Association. 

Baker, E.L., O’Neil, H.F., & Linn, R.L. (1993). Policy and validity prospects for performance-

based assessments. American Psychologist, 48(12), 1210-1218.  

Braun, H. (1988).  Understanding scoring reliability: Experiments in calibrating essay readers.  

Journal of Educational Statistics, 13, 1-18.  

Brennan, R.L. (1998). Raw-score conditional standard errors of measurement in generalizability 

theory. Applied Psychological Measurement, 22, 307-33. 

Brennan R.L. (2001).  Generalizability theory. New York, NY: Springer-Verlag.   

Feldt, L.S., Steffen, M., & Gupta, N.C. A comparison of five methods for estimating the standard 

error of measurement at specific score levels. Applied Psychological Measurement, 9, 351-

361.  

Harik, P., Clauser, B.E., Grabovsky, I., Nungester, R.J., Swanson, D., Nandakumar, R. (2009).  An 

examination of rater drift within a generalizability framework.  Journal of Educational 

Measurement, 46, 43-58. 

Houston, W.M., Raymond, M.R., & Svec, J. (1991).  Adjustments for rater effects in 

performance assessment. Applied Psychological Measurement, 15, 409-421.  

Lord, F.M. (1955). Estimating test reliability. Educational and Psychological Measurement, 15, 

325-336.  



Conditional SEMs from OLS, 18 

 

Lord, F.M. (1957). Do tests of the same length have the same standard error of measurement? 

Educational and Psychological Measurement, 17, 510-521.  

Qualls-Payne, A.L. (1992). A comparison of score level estimates of the standard error of 

measurement. Journal of Educational Measurement, 29, 213-225.  

Raymond, M.R., & Viswesvaran, C. (1993). Least-squares models to correct for rater effects in 

performance assessment.  Journal of Educational Measurement, 30, 253-268. 

Raymond, M.R., Harik, P., & Clauser, B.E. (2011). The impact of statistically adjusting for rater 

effects on conditional standard errors of performance ratings. Applied Psychological 

Measurement, 2011, (in press).  

Wilson, H.G. (1988).  Parameter estimation for peer grading under incomplete design.  

Educational and Psychological Measurement, 48, 69-81.  

 



Conditional SEMs from OLS, 19 

 

Table 1  

 

Ratings and Conditional SEMs for np = 40 and nr = 8 completely crossed design
a
. 

 

 R a t e r   

Person A B C D E F G H 
1 4 4 3 4 5 5 4 3 
2 5 5 4 1 5 3 5 2 
3 4 5 5 3 5 5 6 4 
4 6 6 6 5 6 5 6 5 
5 5 5 4 3 6 4 4 4 
6 3 5 5 3 5 5 4 4 
7 5 6 4 2 6 5 6 4 
8 6 4 5 4 5 5 6 4 
9 3 4 3 5 3 3 5 3 
10 3 3 3 1 4 2 4 2 
11 3 5 5 4 5 6 6 3 
12 5 5 7 4 6 7 5 6 
13 5 6 5 4 4 6 5 5 
14 4 4 4 3 6 3 5 3 
15 4 6 6 5 7 6 7 5 
16 5 6 5 4 5 5 6 5 
17 4 6 6 4 6 4 6 5 
18 7 7 7 5 7 6 7 7 
19 5 6 5 3 6 5 6 3 
20 4 5 5 4 6 7 7 5 
21 4 4 5 4 4 3 6 3 
22 5 5 6 5 5 5 6 2 
23 6 5 4 4 4 3 5 3 
24 5 5 5 2 5 4 4 4 
25 4 4 3 2 6 4 5 3 
26 5 6 6 4 7 6 7 6 
27 5 4 6 3 6 7 6 3 
28 4 5 5 4 6 4 7 4 
29 4 5 5 4 4 4 4 4 
30 7 7 7 4 7 7 7 6 
31 4 6 5 3 6 6 7 6 
32 6 6 6 5 5 6 7 4 
33 4 5 4 3 5 5 7 4 
34 4 6 6 3 5 5 7 4 
35 5 6 6 4 4 5 5 4 
36 4 5 5 3 6 6 6 3 
37 6 7 7 4 7 7 6 6 
38 5 6 6 4 6 7 6 4 
39 4 6 5 5 6 4 7 4 
40 4 6 5 4 5 4 7 4 

 
a
The italicized values within the partitions denote ratings that were later dropped 

to produce a nested rating design for additional simulation.  
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Table 2 

Comparison of Indices of Measurement Precision based on Generalizability Theory with 

Indices Based on OLS for the Completely Crossed Design Depicted in Table 1.  

 

Type of 

Rating 

    Type of Error 

Index of Precision
a
 Relative Absolute 

Observed G-Theory overall SEM .2803 .3769   

 G-Theory reliability (ρ
2
, Φ)     .8756 .7957 

Adjusted  G-Theory overall SEM .2803 .2803   

 G-Theory reliability (ρ
2
, Φ) .8756 .8756 

Adjusted OLS overall SEM         .2768 

 OLS reliability (ROLS)          .8787 

 

 
a
  Notes: Overall SEMs based on generalizability theory are given by √∑ 𝜎2 (δ𝑝)/𝑛𝑝  

and by  √∑ 𝜎2 (𝛥𝑝)/𝑛𝑝 , while ρ
2
 and Φ are based on standard formulas (see 

Brennan, 2001).  Equation 13 or 15 produce the overall SEM based on OLS, while 

ROLS  is given by equation 16.   
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Table 3.  

Comparison of Indices of Measurement Precision based on Generalizability Theory with 

Indices Based on OLS for the Nested Design Depicted in Table 1.  

 

Type of 

Rating Index of Precision 

Absolute 

 Error 

Observed G-Theory overall SEM .6583   

 G-Theory reliability (Φ)     .4009 

Adjusted  G-Theory overall SEM .4534   

 G-Theory reliability (Φ) .7358 

Adjusted OLS overall SEM .4533 

 OLS reliability (ROLS)  .7359 

 

a
  Notes: Overall SEMs based on generalizability theory are given by √∑ 𝜎2 (𝛥𝑝)/𝑛𝑝 , 

while Φ is based on the standard formula (see Brennan, 2001).  Equation 13 or 15 

produce the overall SEM based on OLS, while ROLS  is given by equation 16.   
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Figure 1.  Plot of relative conditional SEMs based on generalizability theory and ordinary least 

squares regression for all ratings in Table 1. 
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Figure 2.  Absolute conditional SEMs based on observed ratings and on adjusted ratings for the 

nested design depicted  in Table 1. 

 

 


